crandas.crandas¶
Main crandas functionality: dataframes (CDataFrame), series (CSeries), and analysis operations (e.g., merge())
- class crandas.crandas.CDataFrame(columns, nrows=None, session=None, **kwargs)¶
Bases:
StateObject
Dataframe stored in the VDL CDataFrame provides access to tables stored in the VDL using an API modeled upon Panda’s `DataFrame`s. A CDataFrame may be obtained in one of the following ways:
By uploading data into the VDL using read_csv() or upload_pandas_dataframe()
By accessing an earlier uploaded table using get_table()
- __getitem__(key)¶
Implements df[key]
If key is a CSeries or a function, call CDataFrame.filter.
If key is a list, call CDataFrame.project
If key is a str, return a CSeries representing the column with the given name
If key is a slice, call CDataFrame.slice
- Raises:
TypeError – the key must be one of the accepted types
- add_prefix(prefix)¶
Implements pandas.DataFrame.add_prefix
- Parameters:
prefix (str) – prefix to be added
- Returns:
Copy of CDataFrame where prefixis added to all column names
- Return type:
- add_suffix(suffix)¶
Implements pandas.DataFrame.add_suffix
- Parameters:
suffix (str) – suffix to be added
- Returns:
Copy of CDataFrame where suffix is added to all column names
- Return type:
- append(other, ignore_index=True)¶
Implements pandas.DataFrame.append by calling crandas.concat accordingly TODO: To be deprecated
- Parameters:
other (DataFrame or CDataFrame) – The data to append.
ignore_index (bool, optional) – If True, the resulting axis will be labeled 0, 1, …, n - 1., currently only True is allowed, by default True
- Returns:
The concatenated table
- Return type:
- assign(query_args=None, **assignments)¶
Implements pandas.DataFrame.assign. Assigns new columns to a CDataFrame, and outputs a new CDataFrame with the new columns.
Assigned values need to be CSeries (or callable providing a CSeries), assignment of clear Series/scalar/array not supported.
To pass query arguments such as the target table name, specify them as values of the query_args dict, e.g.:
cdf.assign(newcol=1, query_args={“name”: “tablename”})
To create a column whose name could be a VDL query argument, add a query_args argument to disambiguate, e.g.:
cdf.assign(name=”Column value”, query_args={})
- describe()¶
Generate descriptive statistics
- dropna(axis=0, **query_args)¶
Remove null values from a CDataFrame. The axis determines whether rows (0) or columns (1) are removed. Only rows is implemented. Returns a CDataFrame with no nullable columns or values.
- Parameters:
axis (int/string, optional) – determines whether rows (0) or columns (1) are deleted, by default 0. Only row method is allowed
- Returns:
The original
CDataFrame
with all rows or columns (depending onaxis
) with a null value removed- Return type:
- Raises:
NotImplementedError – Dropping columns is not implemented for structural reason
ValueError – Error whenever a wrong axis is entered
- fillna(value, **query_args)¶
Fill NULL values
Replace NULL values of nullable columns as specified by the value argument. The resulting columns are not nullable anymore.
If value is a valid argument to CSeries.fillna (e.g., an integer, a column, or a function), then this argument is applied to fill in NULLs in all nullable columns of the table (and so value needs to be of the correct type for all nullable columns).
If value is a dict, then the respective dictionary values are provided (as above) to fill in NULLs for the respective column.
If value is a CDataFrame, then the respective columns of value are used to fill in NULLs for the corresponding columns of self. This is done only for columns that occur in both CDataFrames.
- Parameters:
value (value/dict/CDataFrame) – Values to fill in for NULLs (see above)
- Returns:
Copy of table with NULLs replaced as indicated
- Return type:
- filter(key, threshold=None, **query_args)¶
Filter table
Returns table with all rows of the original table satisfying the criterion represented by
key
.key
can be aCSeries
representing a table column or a computation on table row(s). In this case, theCSeries
values need to be 1 (indicating that the corresponding row will be selected) or 0 (indicating that the row will not be selected).If the
CSeries
used for indexing has a threshold (seeCSeries.with_threshold
), the filtered result is only returned if it has the minimum number of rows as indicated by the threshold.Alternatively,
key
can be a function to be applied to the table columns. The function is called with one argument representing the table, of which the fields correspond to the columns. E.g., keylambda x: x.col1==1
represents the function that checks whether the value of column with namecol1
equals one.See
function_to_json
for more information.- Parameters:
key (CSeries or callable) – Filter criterion
threshold (int, optional, default: None) – If given, sets a minimum amount of rows that the resulting table needs to have; otherwise, the server returns an error. Equivalent to calling filter with
key.with_threshold(threshold)
query_args (query arguments, see vdl_query)
- Returns:
The filtered table
- Return type:
- groupby(cols, *, bypass_same_value_check=False, **query_args)¶
Computes a grouping of the table by the values of (a) given column(s). Returns a grouping object that can be used in aggregation (see CSeriesGroupBy) or as an argument to crandas.merge().
- Parameters:
cols (str iterable or str or
groupby.CDataFrameGroupBy
) – If a string iterable is given, use these as the name of the columns to group by. If a string is given, use this as the name of the single column to group by. If agroupby.CDataFrameGroupBy
object (i.e., a result of an earlier groupby operation) is given, re-use that grouping as a grouping of the current table. (The current table needs to have a column with the given name and the same values as the table for which the grouping was originally made.)bypass_same_value_check (bool, default: False) – Unless set, if the given cols is a
groupby.CDataFrameGroupBy
instance made from an other table, it is checked if that columns are the same for the current and the other table. Bypassing this check may avoid problems where the check cannot be performed for large values.
- Returns:
Grouping object
- Return type:
- max(axis=0)¶
Computes the maximum of each (numeric) column
- Parameters:
axis (int, optional) – Which axis of the dataframe, only 0 is implemented, by default 0
- min(axis=0)¶
Computes the minimum of each (numeric) column
- Parameters:
axis (int, optional) – Which axis of the dataframe, only 0 is implemented, by default 0
- project(cols, **query_args)¶
Project table
Returns table with same rows but a selection of columns
- Parameters:
cols (list of str) – Columns to select. Can be empty. Columns can occur multiple times.
query_args (query arguments, see vdl_query)
- Returns:
The projected table
- Return type:
- rename(columns, **query_args)¶
Implements pandas.DataFrame.rename Only renaming of columns via columns argument is supported.
- Parameters:
columns (dict) – dictionary of columns to be renamed of the form {“oldname”: “newname”}
- Returns:
CDataFrame with updated column names
- Return type:
- sample(*, n=None, frac=None, random_state=None, **query_args)¶
Samples rows from the dataframe.
The number of rows can be specified either as an integer n or a fraction frac. The case frac==1 corresponds to returning a shuffling of the table and is equivalent to CDataFrame.shuffle.
If a random_state is given, the sampling is performed in a deterministic way and according to a public selection (i.e., known to the servers and predictable to the client); otherwise, the sampling is non-deterministic and private (not known to the client and servers). See also CDataFrame.shuffle.
- Parameters:
n (integer, default: None) – Number of rows to sample
frac (floating-point, default: None) – Proportion of rows (between 0.0 and 1.0, inclusive) to sample
random_state (long integer, default: None) – Seed for deterministic sampling (otherwise is non-determinitic)
- Returns:
ret – Copy of the table with rows sampled
- Return type:
- shuffle(*, random_state=None, **query_args)¶
Return table with rows shuffled. If a random_state is given, the shuffle is determinstic and performed according to a public permutation (i.e., known to the servers and predictable to the client); otherwise, the shuffle is non-deterministic and private (not known to the client and servers).
- Parameters:
random_state (long integer, default: None) – Seed for deterministic shuffle (otherwise is non-determinitic)
- Returns:
ret – Copy of the table with rows shuffled
- Return type:
- slice(key, **query_args)¶
Slice table
Returns table with same columns but a selection of rows
- Parameters:
key (slice) – Python slice object representing rows to select
query_args (query arguments, see vdl_query)
- Returns:
The sliced table
- Return type:
- sort_values(by, **query_args)¶
Sorts the dataframe according to the values in the column by. Currently, sorting on strings is not supported.
- Parameters:
by (str) – The column to sort on
- Returns:
ret – Copy of the sorted table
- Return type:
- validate(*validations, **query_args)¶
Applies input validation to the table.
Input validation leads to a table that has the validations as constraints on the respective columns (e.g., checking that a column contains values in [0,2] leads to a column with values constrained to that domain). These constraints can be inspected by accessing tab.columns.cols[i].constaints.
Validations are instances of the
crandas.Validation
class and can be set by calling validation functions such ascrandas.CSeriesColRef.in_range()
andcrandas.CSeriesColRef.sum_in_range()
.- Parameters:
*validations (list of
crandas.Validation
objects) – Validations to apply to the table- Returns:
If all validations have succeeded: copy of the table having the validations as constraints
- Return type:
- class crandas.crandas.CIndex(cols, **kwargs)¶
Bases:
object
Index (set of columns) of a CDataFrame
For a regular CDataFrame, this represents the columns (name and type) of the CDataFrame.
For a deferred CDataFrame (in a transaction, or resulting from a dry run), this represents the columns (name and type) that the result of an operation is expected to have based on its inputs. For such an expected column, the name is set, but the type and size (“elements per value”) may be undefined.
- __eq__(other)¶
Checks equality with input
- __getitem__(ix)¶
Returns name of column ix
- __len__()¶
Returns number of columns
- __repr__()¶
Returns printable representation
- classmethod from_json(json)¶
Constructor from a JSON
- get_loc(name)¶
Get integer location for requested label
- Parameters:
name (str) – column name label;
- Returns:
index of column with name name
- Return type:
int
- Raises:
KeyError – value not found
- matches_template(expected)¶
Checks whether the number and names of columns fit a template
- to_dict()¶
Returns column names in dictionary form
- class crandas.crandas.CSeries(**kwargs)¶
Bases:
Summable
One dimensional array which represents either the column of a CDataFrame or the result of applying a rowwise function to one or more columns of a CDataFrame
- class DT(outer_instance)¶
Bases:
object
Used to retrieve date units in the pandas way
- as_table(*, column_name='', **query_args)¶
Outputs CDataFrame having the CSeries as column
- Parameters:
column_name (str, optional) – name for the column in the resulting CDataFrame
- Returns:
CDataFrame having the expected CSeries as its only column
- Return type:
- as_value(**query_args)¶
Interpret single-row CSeries as value
Interpret single-row CSeries as a constant. For example, without using
as_value
,a["col2"]+b["col2"]
performs row-wise addition. Withas_value
, a single-row CSeries is interpreted as a single value instead of as a column, e.g.,a["col2"]+b["col2"].as_value()
adds the value of the rowcol2
of tableb
to each row ofa["col2"]
.This function can be used to work with values that remain secret to the servers that perform the computation, e.g.:
data = cd.DataFrame({"a": [1, 2, 3]}) # The value "1" is a part of the function definition and so becomes known # to the servers data[data["a"] == 1] # The value "1" is derived from a single-row column of a private table and # so remains hidden to the servers filtervalue = cd.DataFrame({"filtervalue": [1]})["filtervalue"].as_value() data[data["a"] == filtervalue]
- Returns:
ReturnValue representing the value of the (only row of the) CSeries
- Return type:
- astype(ctype, validate=False)¶
Converts output to a specific type
- Parameters:
ctype (Ctypes type specification) –
Type to convert to.
- The valid ctypes are as follows:
'bool'
'bytes'
'float64'
: fixed-point numbers'frac64'
: fractional integers'int'
:'uint'
: unsigned integer'int8'
,'int16'
,'int24'
,'int32'
: explicitly sized integer'int?'
: nullable integer'int_vec'
: integer vector
Any combination of these variations e.g.
'uint32?_vec'
'varchar[n]'
: string of sizen
validate (bool, default False) – If set, validate that the resulting column is of the correct type, e.g., is an 8-bit integer when
tp=uint8
.
- Returns:
CSeries converted to given type
- Return type:
- Raises:
ServerError – Conversion failed or not supported
- contains(other)¶
Substring search
Searches for substring in the column
- Parameters:
other (
crandas.CSeries
) – Substring to search for- Returns:
Result of search:
1
if substring is found,0
otherwise- Return type:
- day()¶
Returns the day of the month
- Returns:
day of the month
- Return type:
int
- day_of_year()¶
Returns the day of the year
- Returns:
Number representing the day of the year
- Return type:
int
- dayofyear()¶
Returns the day of the year
- Returns:
Number representing the day of the year
- Return type:
int
- fillna(nullval)¶
Replaces NULL values in the column by nullval
- Parameters:
nullval (rowwise function) – Value to replace NULLs by
- fullmatch(pattern, *args)¶
Regular expression matching
Matches column to a regular expression.
- Parameters:
pattern (
re.Re
) – Regular expression to matchargs (list of
crandas.CSeries
) – Additional columns for the match (can be referred to by(?1)
to(?9)
in the regular expression, e.g.,r".*(?1).*"
)
- Returns:
Column containing the result of the matching:
1
if there is a match and0
otherwise.- Return type:
- get(*, name='', **query_args)¶
Deprecated. Use
CSeries.as_table()
instead.
- if_else(ifval, elseval)¶
Allows values to be assigned with an if-else statement where self is the guard and has to be a column of bits; the value from ifval is selected for rows of self that have the value one and the value from elseval is selected for rows of self that have the value zero
- Parameters:
ifval (int) – Value if true
elseval (int) – Value otherwise
- inner(other)¶
Inner product of two vectors
- isna()¶
Returns whether respective values are NULL, boolean inverse of notna
- isnull()¶
Returns whether respective values are NULL, boolean inverse of notna
- len()¶
Returns the character length of each element of the CSeries (only works for Cseries of type string)
- Returns:
CSeries of character lengths
- Return type:
- lower()¶
Returns string values in lowercase
- month()¶
Returns the month in number format
- Returns:
month
- Return type:
int
- notna()¶
Returns whether respective values are not NULL, boolean inverse of isna
- notnull()¶
Alias for isna
- open()¶
Returns column in opened form
- vsum()¶
Sum the elements of a vector
- weekday()¶
Returns the day of the week, where Monday is 0
- Returns:
Number representing the day of the week
- Return type:
int
- with_threshold(threshold)¶
Adds a threshold to the CSeries. When the column is used as a filtering column or in an aggregation operation, this threshold indicates the minimum number of items that need to be in the filtering result or have the aggregation taken over.
- Parameters:
threshold (int) – minimum number of elements for operation to be allowed
- year()¶
Returns the year
- Returns:
year in 4 digits
- Return type:
int
- class crandas.crandas.CSeriesColRef(table, name, **kwargs)¶
Bases:
CSeries
Column of CDataFrame
Subclass of CSeries. Represents a column of a CDataFrame df as accesed via
df["colname"]
orlambda x: x.colname
.- as_table(*, column_name='', **query_args)¶
Outputs CDataFrame having the CSeries as column
- Parameters:
column_name (str, optional) – name for the column in the resulting CDataFrame
- Returns:
CDataFrame having the expected CSeries as its only column
- Return type:
- count(*, as_table=False, threshold=None, **query_args)¶
Computes the number of not-NULL elements of the series
See
sum()
for a description of the arguments.
- in_range(minval, maxval)¶
Validation that column values lie in specified range
Apples to integer/integer vector columns only
- Parameters:
minval (int) – minimum (inclusive);
maxval (int) – maximum (inclusive)
- Returns:
Validator for use in CDataFrame.validate
- Return type:
- max(*, as_table=False, threshold=None, **query_args)¶
Computes the maximum of the series
See
sum()
for a description of the arguments.
- mean(*, as_table=False, threshold=None, **query_args)¶
Computes the mean of the elements of the series.
See
sum()
for a description of the arguments.
- min(*, as_table=False, threshold=None, **query_args)¶
Computes the minimum of the series
See
sum()
for a description of the arguments.
- sum(*, as_table=False, threshold=None, **query_args)¶
Computes the sum of the elements of the series
- Parameters:
as_table (boolean, default: False) – if True, result is returned as DataFrame instead of value
threshold (int, default None) – if given, only return value as long as the number of not-NULL elements is above the minimum threshold of elements for the operation
- Returns:
Result of applicable type, depending on as_table and mode
- Return type:
int/Deferred/DataFrame/CDataFrame
- sum_in_range(minval, maxval)¶
Validation that sum of column values lies in specified range
Applies to integer/integer vector columns only
- Parameters:
minval (int) – minimum (inclusive);
maxval (int) – maximum (inclusive)
- Returns:
Validator for use in CDataFrame.validate
- Return type:
- class crandas.crandas.CSeriesFun(op, vals, args={}, **kwargs)¶
Bases:
CSeries
Subclass of CSeries over which a function was applied to it
- class crandas.crandas.Col(name, type, elperv, nullable=False, constraints=None, modulus=None, **kwargs)¶
Bases:
object
Represents the type of a column.
The type and elperv fields can be equal to “?” and -1, respectively, to indicate that these are not known (e.g., for colums in an expected specification to vdl_query).
- __eq__(other)¶
Checks structural equality between columns
- __repr__()¶
Returns printable representation
- renamed(name)¶
Return copy of the Col with a different name
- crandas.crandas.DataFrame(*args, name=None, dummy_for=None, ctype=None, auto_bounds=None, session=None, **kwargs)¶
Creates a crandas dataframe. This function calls the pandas DataFrame constructor, and uploads the resulting table using upload_pandas_dataframe(). If a name is given as one of the command-line arguments, it is passed on to `upload_pandas_dataframe().
- Parameters:
ctype (dict, default: None) – explicitly given types for columns
auto_bounds (bool, default: False, configurable with session.auto_bounds) – if given, do not warn about automatically derived column bounds
- Returns:
uploaded table
- Return type:
- class crandas.crandas.ExpectDropResult(*, expected_len, **kwargs)¶
Bases:
ResponseHandler
Response handler for drop response with given expected length
- class crandas.crandas.ReturnValue(type, elperv, is_series, num_rows=None, modulus=-1, *, handle, **kwargs)¶
Bases:
StateObject
,CSeries
Represent a value or series of values computed by the VDL
Various VDL commands, e.g.,
CSeries.sum()
, return values or series of values, as opposed to returning a DataFrame. This class is the analogue of CDataFrame that is used to represent such remote values.A ReturnValue can be used as a
CSeries
, making it possible e.g. to filter on a value computed by the VDL without having to open it. For example, the following filters all maximum elements without revealing the maximum:tab[tab["col"]==tab["col"].max(mode="regular")]
.To obtain the value/series in the clear, call
ReturnValue.open()
. This returns a single value, unless.is_series
is set, in which case it returns a Pandas series, which needs to have.num_rows
rows if set.- get(**query_args)¶
Deprecated. Use
CSeries.as_table()
instead.
- open(**query_args)¶
Open value
- Parameters:
query_args (query arguments)
- Returns:
Value represented by remote object, see main class documentation
- Return type:
int/…/pd.Series
- crandas.crandas.Series(*args, **kwargs)¶
Alias for pd.Series to allow easier conversion between pandas and crandas code.
- class crandas.crandas.Validation(table, col, json_desc)¶
Bases:
object
Represents a validation that can be applied to a column.
Returned by functions like
crandas.CSeriesColRef.in_range()
, etc. Used as an argument tocrandas.CDataFrame.validate()
.- json_desc can contain a combination of the following keys and values:
- bounds ([int string, int string])
the lower and upper bounds of the data, represented as strings for arbitrary precision
- sum_bounds ([int string, int string])
the lower and upper bounds of the sum of an array entry, represented as strings for arbitrary precision
- precision (int)
fixed-point precision
- is_array (bool)
boolean representing whether the column is an array
If the column is of type
int
, it can have the following keys: bounds, sum_bounds, is_arrayIf the column is of type
fixed point
, it can have the following keys: bounds, is_array, precision
- crandas.crandas.choose_threshold(obj_threshold, arg_threshold)¶
Choose threshold where
obj_threshold
is given using thewith_threshold()
function (and hence, set in the CDataFrame or CSeries itself, andarg_threshold
is specified as an argument to the aggregation function or filter() function.Returns the threshold or None.
- crandas.crandas.concat(tables_, *, ignore_index=True, axis=0, join='outer', session=None, **query_args)¶
Table concatenation Performs horizontal/vertical concatenation of tables, modelled on pandas pd.concat. Currently, only inner joins are suported for vertical concatenation. The first table defines the set of columns that the resulting table has. If join=”inner”, only columns common to all tables are included. Else, the remaining tables need to have the same set of columns as the first table (up to ordering), else an error is returned.
- Parameters:
tables (list of CDataFrames) – One or more DataFrames to be concatenated
ignore_index (bool, optional) – does nothing, but is used in crandas.append, by default True
axis (int, optional) – Concatenation axis, 0=vertical, 1=horizontal, by default 0
join (str, optional) – type of join (currently only inner join is supported for vertical join), by default “outer”
- Returns:
mode-dependent return table representing vertical/horizontal join
- Return type:
- Raises:
RuntimeError – Received wrong inputs
NotImplementedError – Limited vertical concatenation is allowed, there must be a matching column on both tables to be concatenated
ValueError – Limited vertical concatenation is allowed, number of columns should be the same in all tables
RuntimeError – Horizontal join would create table with duplicate column names
- crandas.crandas.cut(series, bins, *, labels, right=True, add_inf=False)¶
Bin values into discrete intervals (aka quantization)
Bins values into discrete intervals, a la pandas.cut. Quantizes series into bins [bins[0],bins[1]), [bins[1],bins[2]), etc, and returns the corresponding bin labels (so labels[0] for bin [bins[0],bins[1]), labels[1] for bin [bins[1],bins[2]), etc. The bins include the left edge and exclude the right edge.
The first bin should have -np.inf as left edge and the last bin should have np.inf as its right edge. If the argument add_inf is set to true, these edges are automatically added and do not need to be given as arguments.
The bins and labels can be given in the plain (e.g., cd.cut(cdf[“col”], [-np.inf, 0, 10, np.inf], [1, 2, 3]), or as columns providing respective bins and labels for the respective input rows (e.g., cd.cut(cdf[“col”], cd[“bins”], cd[“labels”])). In the latter case, the argument add_inf=True should be given.
- Parameters:
series (CSeries) – series to apply quantization to
bins (CSeries) – series defining the bin edges
labels (CSeries) – series defining the bin labels
right (bool) – specifies whether bins include their right edges
add_inf (bool) – when set to
False
,bins
should include-np.inf
andnp.inf
; when set toTrue
they are automatically added
- Return type:
CSeries representing the result of the quantization
- crandas.crandas.demo_table(number_of_rows=1, number_of_columns=1, **query_args)¶
Create demo table.
Creates a demo table with the given number of rows and columns. The columns are respectively named “col1”, “col2”, … and have sequential integer values 1, 2, …
A nonce is included in the command so that every time this command is called, it receives a fresh table handle.
- Parameters:
number_of_rows (int, optional) – Number of rows of resulting table, by default 1
number_of_columns (int, optional) – Number of columns of resulting table, by default 1
- Returns:
A demo table with a fresh name
- Return type:
- crandas.crandas.get_table(handle_or_name, /, *, schema=None, map_dummy_handles=None, **query_args)¶
Access a previously uploaded table by its handle or name.
The previously uploaded table is specified using the handle_or_name argument.
Note that a name argument, if given, is interpreted as being part of the standard query arguments, and is thus interpreted as a target name for the result of the get query. Accordingly, get_table(“a”, name=”b”) can be used to assign the (additional) symbolic name “b” to the table with name or handle “a”.
- Parameters:
handle_or_name (str) – Handle (hex-encoded string) or name. Gets interpreted as a handle if it is a 64 hexadecimal (uppercase) string, otherwise as a name.
schema (CIndex/list of column names/DataFrame/any valid argument to pandas.read_csv, optional) – represents the structure of the table to be added. Needed if get_table is called from a Transaction, or if it is desired to check that the table corresponds to the given schema, by default None
map_dummy_handles (bool, optional) –
Whenever a script is being recorded (see
crandas.script
), the default behavior is to interpret all calls toget_table(handle)
asdummy_for:<handle>
table names. This allows the user to use the same handle in both script recording and execution, even though the script recording takes place in a different environment where the real table handle does not exist.This behavior can be overridden in two levels: for the entire script or for a single call to
get_table
. For the entire script, mapping dummy handles can be disabled by supplyingmap_dummy_handles
asFalse
in the call tocrandas.script.record()
. For the call toget_table
, by specifying this argument as either True or False, the mapping behavior is forced to be either enabled or disabled, regardless of the current script mode.
- Returns:
The table with handle
handle_or_name
- Return type:
- Raises:
ValueError – Schema not specified for importing from a transaction
- crandas.crandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, validate='one_to_one', **query_args)¶
Merge tables using a database-style join. Implements pandas.merge. The following types of merge are supported:
inner join: returns only the rows where the join columns match; requires join column values to be unique in both tables
outer join: returns rows from both tables, matched where possible; requires join column values to be unique in both tables
left join: return rows of left table in original order, matched with a row of the right table where possible; requires join column values to be unique in right table
Columns to join on are given either by a common on argument, or separate left_on and right_on arguments for the left and right tables. To perform a left join where the join column values are not unique, provide a CDataFrameGroupBy object (as returned by CDataFrame.groupby()) as left_on. Currently, this is only possible with a single join column. :param left: Left table to be joined :type left: CDataFrame :param right: Right table to be joined :type right: CDataFrame :param how: Type of join :type how: “inner” (default), “outer”, or “left”, optional :param on: Column(s) to join on; must be common to both tables :type on: str or list of str, optional :param left_on: Column(s) of the left table to join on :type left_on: str, list of str, or CDataFrameGroupBy, optional :param right_on: Column(s) of the right table to join on, by default None :type right_on: str or list of str, optional :param validate: Type of validation; currently, only join with one_to_one validation
is supported, by default “one_to_one”
- Parameters:
query_args – VDL query arguments
- Returns:
Result of the merging operation
- Return type:
- Raises:
MergeError – Values of the join columns are not unique
- crandas.crandas.read_csv(file, *, name=None, auto_bounds=None, **query_args)¶
Upload the given CSV file to the VDL
- Parameters:
file (str) – name of the file
name (sr, optional) – name for the table; passed on to upload_pandas_dataframe() if given, by default None
auto_bounds (bool, default: False, configurable with session.auto_bounds) – if given, do not warn about automatically derived column bounds
- Returns:
uploaded table
- Return type:
- crandas.crandas.remove_objects(objects, **query_args)¶
Remove objects from server
If the list of objects contained a non-existent object, an error is raised. Still, all objects from the list are removed.
- Parameters:
objects (list of StateObject (CDataFrame, ...)) – Objects to be removed
- Raises:
ServerError – Some of the given objects did not exist
- crandas.crandas.series_max(col1, col2)¶
Compute the maximum of two CSeries
- crandas.crandas.series_min(col1, col2)¶
Compute the minumum of two CSeries
- crandas.crandas.upload_pandas_dataframe(df, ctype=None, session=None, _keep=True, *, auto_bounds=None, **query_args)¶
Uploads an existing pandas DataFrame into the VDL
- Parameters:
df (pandas.DataFrame) – DataFrame to upload
name (str, optional) – name for the table; passed on to upload_pandas_dataframe() if given, by default None
auto_bounds (bool, default: False, configurable with session.auto_bounds) – if given, do not warn about automatically derived column bounds
- Returns:
the uploaded DataFrame
- Return type: