Index of functions per column type

This is a list of the functions that can be applied on tables or columns, depending on the column type.

Table functions

The following functions can be applies on any table, regardless of the types of columns it contains:

Methods (e.g. table.shuffle())

Global functions (e.g. cd.concat(table, table2)):

Any column

The following functions can be applied on any column, regardless of its type:

Table methods

Column methods (e.g. table["column_name"].as_table())

Numeric column

The following functions can be applied to any numeric column. The current column types are integer, nullable integer, integer vector and fixed point numbers.

Integer column

These methods apply to integer columns:

Table methods

Column methods

Global functions

Grouping functions

These functions require a GroupBy object (output by CDataFrame.groupby()) which only works for integer columns. Such object represents a grouped table.

Performing the following

Grouping table methods

Grouping column methods

For the following methods, not only must the grouping be created for an integer column, but it can only be applied to an integer column

Given a table tab with an integer index int_index, a column of ages age and one column with names name:

grouping = tab.groupby("int_index")

# This works
age_sum = grouping["age"].agg(cd.groupby.sum)

# This does not
name_sum = grouping["name"].agg(cd.groupby.sum)

Column of vectors of integers

Column methods

Column of nullable integers

Table methods

Column methods

String column

Column methods

Global functions