crandas.crlearn¶
- class crandas.crlearn.linear_model.LinearRegression(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False)¶
Bases:
Ridge
Linear Regression Classifier Object using ordinary Least Squares with the same parameters as the Scikit learn LinearRegression Class
see: https://github.com/scikit-learn/scikit-learn/blob/7f9bad99d/sklearn/linear_model/_base.py#L534 for its parameters.
Currently, this class inherits from Ridge since we implemented in terms of Ridge Regression. We use the fact that alpha = 0 in Ridge translates to Ordinary Least Squares
- class crandas.crlearn.linear_model.LinearRegressionStateObject(reg_type, **kwargs)¶
Bases:
StateObject
- class crandas.crlearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, copy_X=True, max_iter=None, tol=None, solver='auto', positive=None, random_state=None)¶
Bases:
object
Linear Ridge Regression Classifier Object with the same parameters as the Scikit learn Ridge Regression Class
see: https://github.com/scikit-learn/scikit-learn/blob/364c77e047ca08a95862becf40a04fe9d4cd2c98/sklearn/linear_model/_ridge.py for its parameters.
- fit(X, y, sample_weight=None, **query_args)¶
Fit a Linear Regression model on the data
- Parameters:
X (CDataFrame) – Training data
y (CDataFrame) – Target data (should have only 1 column)
sample_weight – array of weights assigned to individual sampled (Not yet supported)
query_args – See queryargs
- Return type:
self
- get_beta(**kwargs)¶
Get the fitted parameters (i.e. intercept_ and coef_ combined in 1 table named beta).
- predict(X, **query_args)¶
Make predictions on a dataset using a linear regression model
Note: this returns predictions on the target, not probabilities!
- Parameters:
X (CDataFrame) – predictor variables
query_args – See queryargs
- Returns:
table containing the column consisting of the predicted target values
- Return type:
- score(X, y, **query_args)¶
Scores the linear regression model using the R2 metric
- Parameters:
X (CDataFrame) – Test data
y (CDataFrame) – Target test data (should have only 1 column)
query_args – See queryargs
- Return type:
self
- class crandas.crlearn.logistic_regression.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=10, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None, classes=[], n_classes=2)¶
Bases:
object
Logistic Regression Classifier Object with the same parameters as the Scikit learn Logistic Regression Class
See: https://github.com/scikit-learn/scikit-learn/blob/98cf537f5/sklearn/linear_model/_logistic.py#L783 for its parameters.
- fit(X, y, sample_weight=None, max_iter=None, warm_start=None, **query_args)¶
Fit a Logistic Regression model on the data
NOTE: Compared to Scikit learn we add the parameter max_iter and warm_start. Scikit learn treats max_iter and warm_start as object configurations which are set at construction and cannot be changed. We prefer to give the user the freedom of deviating form the global setting in successive fitting calls.
We rather use the corresponding class attributes as default values for each call to fit.
- Parameters:
X (CDataFrame) – predictor variables
y (CDataFrame) – response variable (should have only 1 column) that columns should be integer.
sample_weight – array of weights assigned to individual sampled (Not yet supported)
max_iter (int) – deviation from Scikit (see note above)
warm_start (bool) – deviation from Scikit (see note above) if True: determines whether successive fits continue approximation from where it stopped else: indicates that each successive fit will start from scratch.
query_args – See queryargs
- Returns:
self
- Return type:
- get_beta(**kwargs)¶
Get the fitted parameters (i.e. intercept_ and coef_ combined in 1 table named beta).
- predict(X, decision_boundary=0.5, **query_args)¶
Make (binary) predictions on a dataset using a logistic regression model
Note: this returns binary predictions, not probabilities!
- Parameters:
X (CDataFrame) – predictor variables
decision_boundary (float) – number between 0 and 1; records with a probability below this value are classified as 0, greater than or equal to as 1
query_args – See queryargs
- Returns:
column consisting of the predicted probabilities
- Return type:
- predict_proba(X, **query_args)¶
Make (probability) predictions on a dataset using a logistic regression model
Note: this returns probabilities, not binary predictions
- Parameters:
X (CDataFrame) – predictor variables
query_args – See queryargs
- Returns:
column consisting of the predicted probabilities
- Return type:
- class crandas.crlearn.logistic_regression.LogisticRegressionStateObject(reg_type, **kwargs)¶
Bases:
StateObject
- crandas.crlearn.metrics.classification_accuracy(y, y_pred, n_classes=2, **query_args)¶
Compute the classification accuracy on class predictions
- Parameters:
y (CDataFrame) – column with the actual values in range
y_pred (CDataFrame) – column with the predictions in range
n_classes (int) – number of classes (default = 2)
query_args – See queryargs
- Returns:
fixed point number between 0 and 1
- Return type:
- crandas.crlearn.metrics.confusion_matrix(y, y_pred, n_classes=2, **query_args)¶
Compute the confusion matrix on class predictions
The y-axis of the result represents the true class. The x-axis the predicted class.
- Parameters:
y (CDataFrame) – column with the actual values in range
y_pred (CDataFrame) – column with the predictions in range
n_classes (int) – number of classes (default = 2)
query_args – See queryargs
- Returns:
matrix of size n_classes * n_classes
- Return type:
- crandas.crlearn.metrics.mcfadden_r2(model, X, y, **query_args)¶
Compute the McFadden R^2 metric
- Parameters:
model (LogisticModel) – logistic regression model
X (CDataFrame) – predictor variables
y (CDataFrame) – binary response variable (should have only 1 column)
query_args – See queryargs
- Returns:
fixed point number between 0 and 1
- Return type:
- crandas.crlearn.metrics.model_deviance(model, X, y, **query_args)¶
Compute the model deviance
- Parameters:
model (LogisticModel) – logistic regression model
X (CDataFrame) – predictor variables
y (CDataFrame) – binary response variable (should have only 1 column)
query_args – See queryargs
- Returns:
fixed point number between 0 and 1
- Return type:
- crandas.crlearn.metrics.null_deviance(y, **query_args)¶
Compute the null deviance
- Parameters:
y (CDataFrame) – binary response variable (should have only 1 column)
query_args – See queryargs
NOTE (both classes NEED to be present in 'y', otherwise the computations are undefined internally (logarithm of 0))
- Returns:
fixed point number between 0 and 1
- Return type:
- crandas.crlearn.metrics.precision_recall(y, y_pred, **query_args)¶
Compute the precision and recall on predictions
- Parameters:
y (CDataFrame) – column with the actual values (binary)
y_pred (CDataFrame) – column with the predictions (binary)
- query_args :
See queryargs
- Returns:
two fixed numbers between 0 and 1
- Return type:
- crandas.crlearn.metrics.score_r2(y, y_pred, **query_args)¶
Compute the R^2 metric on predictions
- Parameters:
y (CDataFrame) – column with the actual values
y_pred (CDataFrame) – column with the predictions
query_args – See queryargs
- Returns:
fixed point number between < 1
- Return type:
- crandas.crlearn.metrics.tjur_r2(y, y_pred, **query_args)¶
Compute the Tjur R^2 metric on predictions
- Parameters:
y (CDataFrame) – column with the actual values (binary)
y_pred (CDataFrame) – column with the predictions (probabilities!)
query_args – See queryargs
- Returns:
fixed point number between -1 and 1
- Return type: