crandas.crlearn¶
- class crandas.crlearn.linear_model.CLinearRegression(instance=None)¶
Bases:
CModel
Linear ridge regression classifier corresponding to the scikit-learn
Ridge
class (see here).Parameters:
alpha
: regularization strength (see scikit-learn documentation); defaults to1.0
Attributes:
n_features_in_
: number of input featuresfeature_names_in_
: input feature namesbeta_
: (encrypted) fitted parameters (intercept and respective feature coefficients)
- fit(X, y, **query_args)¶
Fit a Linear Regression model on the data
- Parameters:
X (CDataFrame) – Training data
y (CDataFrame) – Target data (should have only 1 column)
query_args – See queryargs
- Return type:
self
- get_beta(**query_args)¶
Get the fitted parameters (i.e. intercept and feature coeficients) as a table
This function is deprecated; instead, use
CModel.open()
to open the model, and use the returnedbeta_
attribute.
- predict(X, **query_args)¶
Make predictions on a dataset using a linear regression model
Note: this returns predictions on the target, not probabilities!
- Parameters:
X (CDataFrame) – predictor variables
query_args – See queryargs
- Returns:
table containing the column consisting of the predicted target values
- Return type:
- score(X, y, **query_args)¶
Scores the linear regression model using the R2 metric
- Parameters:
X (CDataFrame) – Test data
y (CDataFrame) – Target test data (should have only 1 column)
query_args – See queryargs
- Return type:
self
- crandas.crlearn.linear_model.LinearRegression(alpha=0.0, *, fit_intercept=True, copy_X=True, n_jobs=None, positive=False, **params_and_query_args)¶
Create a new linear regression model (
CLinearRegression
) with given alpha (0.0 by default)Other parameters are for compatibility with scikit-learn and cannot be overriden.
- crandas.crlearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, copy_X=True, max_iter=None, tol=None, solver='cholesky', positive=False, random_state=None, **params_and_query_args)¶
Create a new ridge regression model (
CLinearRegression
) with given alpha (1.0 by default)Other parameters are for compatibility with scikit-learn and cannot be overriden.
- class crandas.crlearn.logistic_regression.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=10, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None, classes=[], n_classes=2)¶
Bases:
object
Logistic Regression Classifier Object with the same parameters as the Scikit-learn Logistic Regression Class
See here for its parameters.
- fit(X, y, sample_weight=None, max_iter=None, warm_start=None, **query_args)¶
Fit a Logistic Regression model on the data
- Parameters:
X (CDataFrame) – predictor variables
y (CDataFrame) – response variable (should have only 1 column) that columns should be integer.
sample_weight – array of weights assigned to individual sampled (Not yet supported)
max_iter (int) – deviation from Scikit (see note above)
warm_start (bool) – deviation from Scikit (see note above) if True: determines whether successive fits continue approximation from where it stopped else: indicates that each successive fit will start from scratch.
query_args – See queryargs
- Returns:
self
- Return type:
Notes
Note
Compared to Scikit-learn we add the parameter
max_iter
andwarm_start
. Scikit-learn treatsmax_iter
andwarm_start
as object configurations which are set at construction and cannot be changed. We prefer to give the user the freedom of deviating form the global setting in successive calls tofit()
.We rather use the corresponding class attributes as default values for each call to fit.
- get_beta(**kwargs)¶
Get the fitted parameters (i.e. intercept_ and coef_ combined in 1 table named beta).
- predict(X, decision_boundary=0.5, **query_args)¶
Make (binary) predictions on a dataset using a logistic regression model
Note: this returns binary predictions, not probabilities!
- Parameters:
X (CDataFrame) – predictor variables
decision_boundary (float) – number between 0 and 1; records with a probability below this value are classified as 0, greater than or equal to as 1
query_args – See queryargs
- Returns:
column consisting of the predicted probabilities
- Return type:
- predict_proba(X, **query_args)¶
Make (probability) predictions on a dataset using a logistic regression model
Note: this returns probabilities, not binary predictions
- Parameters:
X (CDataFrame) – predictor variables
query_args – See queryargs
- Returns:
column consisting of the predicted probabilities
- Return type:
- class crandas.crlearn.logistic_regression.LogisticRegressionStateObject(reg_type=None, **kwargs)¶
Bases:
StateObject
- crandas.crlearn.metrics.classification_accuracy(y, y_pred, n_classes=2, **query_args)¶
Compute the classification accuracy on class predictions
- Parameters:
y (CDataFrame) – column with the actual values in range
y_pred (CDataFrame) – column with the predictions in range
n_classes (int) – number of classes (default = 2)
query_args – See queryargs
- Returns:
fixed point number between 0 and 1
- Return type:
- crandas.crlearn.metrics.confusion_matrix(y, y_pred, n_classes=2, **query_args)¶
Compute the confusion matrix on class predictions
The y-axis of the result represents the true class. The x-axis the predicted class.
- Parameters:
y (CDataFrame) – column with the actual values in range
y_pred (CDataFrame) – column with the predictions in range
n_classes (int) – number of classes (default = 2)
query_args – See queryargs
- Returns:
matrix of size n_classes * n_classes
- Return type:
- crandas.crlearn.metrics.mcfadden_r2(model, X, y, **query_args)¶
Compute the McFadden R^2 metric
- Parameters:
model (LogisticModel) – logistic regression model
X (CDataFrame) – predictor variables
y (CDataFrame) – binary response variable (should have only 1 column)
query_args – See queryargs
- Returns:
fixed point number between 0 and 1
- Return type:
- crandas.crlearn.metrics.model_deviance(model, X, y, **query_args)¶
Compute the model deviance
- Parameters:
model (LogisticModel) – logistic regression model
X (CDataFrame) – predictor variables
y (CDataFrame) – binary response variable (should have only 1 column)
query_args – See queryargs
- Returns:
fixed point number between 0 and 1
- Return type:
- crandas.crlearn.metrics.null_deviance(y, **query_args)¶
Compute the null deviance
- Parameters:
y (CDataFrame) – binary response variable (should have only 1 column)
query_args – See queryargs
NOTE (both classes NEED to be present in 'y', otherwise the computations are undefined internally (logarithm of 0))
- Returns:
fixed point number between 0 and 1
- Return type:
- crandas.crlearn.metrics.precision_recall(y, y_pred, **query_args)¶
Compute the precision and recall on predictions
- Parameters:
y (CDataFrame) – column with the actual values (binary)
y_pred (CDataFrame) – column with the predictions (binary)
- query_args :
See queryargs
- Returns:
two fixed numbers between 0 and 1
- Return type:
- crandas.crlearn.metrics.score_r2(y, y_pred, **query_args)¶
Compute the R^2 metric on predictions
- Parameters:
y (CDataFrame) – column with the actual values
y_pred (CDataFrame) – column with the predictions
query_args – See queryargs
- Returns:
fixed point number between < 1
- Return type:
- crandas.crlearn.metrics.tjur_r2(y, y_pred, **query_args)¶
Compute the Tjur R^2 metric on predictions
- Parameters:
y (CDataFrame) – column with the actual values (binary)
y_pred (CDataFrame) – column with the predictions (probabilities!)
query_args – See queryargs
- Returns:
fixed point number between -1 and 1
- Return type: